Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization
نویسندگان
چکیده
In many engineering applications that use tensor analysis, such as tensor imaging, the underlying tensors have the characteristic of being positive definite. It might therefore be more appropriate to use techniques specially adapted to such tensors. We will describe the geometry and calculus on the Riemannian symmetric space of positive-definite tensors. First, we will explain why the geometry, constructed by Emile Cartan, is a natural geometry on that space. Then, we will use this framework to present formulas for means and interpolations specific to positive-definite tensors.
منابع مشابه
Riemannian Metric Learning for Symmetric Positive Definite Matrices
Over the past few years, symmetric positive definite matrices (SPD) have been receiving considerable attention from computer vision community. Though various distance measures have been proposed in the past for comparing SPD matrices, the two most widely-used measures are affine-invariant distance and log-Euclidean distance. This is because these two measures are true geodesic distances induced...
متن کاملPositive Definite Matrices: Data Representation and Applications to Computer Vision
Numerous applications in computer vision and machine learning rely on representations of data that are compact, discriminative, and robust while satisfying several desirable invariances. One such recently successful representation is offered by symmetric positive definite (SPD) matrices. However, the modeling power of SPD matrices comes at a price: rather than a flat Euclidean view, SPD matrice...
متن کاملSupervised LogEuclidean Metric Learning for Symmetric Positive Definite Matrices
Metric learning has been shown to be highly effective to improve the performance of nearest neighbor classification. In this paper, we address the problem of metric learning for symmetric positive definite (SPD) matrices such as covariance matrices, which arise in many real-world applications. Naively using standard Mahalanobis metric learning methods under the Euclidean geometry for SPD matric...
متن کاملGyrovector Spaces on the Open Convex Cone of Positive Definite Matrices
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
متن کاملar X iv : m at h / 02 09 39 9 v 1 [ m at h . R A ] 2 9 Se p 20 02 SYMMETRIC WORD EQUATIONS IN TWO POSITIVE DEFINITE LETTERS
A generalized word in two positive definite matrices A and B is a finite product of nonzero real powers of A and B. Symmetric words in positive definite A and B are positive definite, and so for fixed B, we can view a symmetric word, S(A, B), as a map from the set of positive definite matrices into itself. Given positive definite P , B, and a symmetric word, S(A, B), with positive powers of A, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007